Jarvis @ JM.me

Iris [Dataset]

May 2, 2024 · 30min امیرمحمد

دیتاست آیریس یکی از قدیمی ترین مدل هایی هست که برای نمایش داده کاوی استفاده میشومد

Dataset

A dataset is a collection of data, typically presented in tabular form, organized in rows and columns. It can contain various types of data, such as numerical values, categorical variables, text, images, or any other form of information. Datasets are used in various fields including statistics, machine learning, data analysis, and research, where they serve as the foundation for analysis, modeling, and drawing insights.

Datasets vary widely in size, complexity, and format depending on the specific context and purpose for which they are created. They can be small and simple, such as a spreadsheet containing a few rows of data, or large and complex, such as a database containing millions of records with multiple interrelated tables.

In summary, a dataset is essentially a structured collection of data that serves as a basis for analysis, modeling, and research in various fields.

Usage

The usage of datasets spans across various domains and industries, including:

  1. Data Analysis: Datasets are used extensively for exploratory data analysis (EDA) to understand patterns, trends, and relationships within the data. Analysts and researchers employ statistical techniques and visualization tools to extract insights from datasets.

  2. Machine Learning: Datasets are fundamental for training machine learning models. They provide the necessary input data along with corresponding labels (in supervised learning) or without labels (in unsupervised learning) for the model to learn patterns and make predictions or classifications.

  3. Research: Datasets play a crucial role in academic and scientific research across disciplines such as social sciences, economics, biology, environmental science, and more. Researchers analyze datasets to test hypotheses, validate theories, and generate new knowledge.

  4. Business Intelligence: In the business world, datasets are used for market research, customer segmentation, trend analysis, and forecasting. They help businesses make informed decisions, optimize processes, and identify opportunities for growth.

  5. Government and Public Policy: Governments collect and analyze datasets to inform policymaking, public planning, and resource allocation. Datasets related to demographics, healthcare, education, transportation, and economics are used to address societal challenges and improve governance.

  6. Healthcare and Medicine: Datasets containing patient records, clinical trials data, genomic data, and medical imaging are utilized for disease diagnosis, treatment planning, drug discovery, and epidemiological studies.

  7. Finance: In finance, datasets are employed for risk management, portfolio optimization, algorithmic trading, fraud detection, credit scoring, and market analysis.

  8. Environmental Science: Datasets on weather patterns, climate change, biodiversity, and environmental pollution are analyzed to understand ecological systems, predict natural disasters, and formulate conservation strategies.

Overall, the usage of datasets is pervasive across virtually all sectors of society, contributing to advancements in technology, science, business, and public policy. They serve as valuable resources for understanding the world, solving complex problems, and driving innovation.

Generated by DeepAI

Now the real part

My teacher, Dr. Saeed Haghgoo Wanted me to prepare a dataset for one of his students so I provide the details here.

First I provide you the code :

CODE
from sklearn import datasets
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d

iris = datasets.load_iris()

_, ax = plt.subplots()
scatter = ax.scatter(iris.data[:, 0], iris.data[:, 1], c=iris.target)
ax.set(xlabel=iris.feature_names[0], ylabel=iris.feature_names[1])
_ = ax.legend(scatter.legend_elements()[0], iris.target_names, loc="lower right", title="Classes")

fig = plt.figure(1, figsize=(8, 6))
ax = fig.add_subplot(111, projection="3d", elev=-150, azim=110)

X_reduced = PCA(n_components=3).fit_transform(iris.data)
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=iris.target, s=40)

ax.set_title("First three PCA dimensions")
ax.set_xlabel("1st Eigenvector")
ax.xaxis.set_ticklabels([])
ax.set_ylabel("2nd Eigenvector")
ax.yaxis.set_ticklabels([])
ax.set_zlabel("3rd Eigenvector")
ax.zaxis.set_ticklabels([])

plt.show()
Packages

I used sklearn, matplotlib and scikitlean.

Explanations
  1. Loading the Iris Dataset: It imports the Iris dataset from scikit-learn’s built-in datasets module.

  2. Scatter Plot of the Iris Dataset: It creates a scatter plot of the Iris dataset using Matplotlib. Each point in the plot represents an iris flower, with the x-axis and y-axis representing the sepal length and width, respectively. The color of each point indicates the species of the iris flower.

  3. Plot a PCA Representation: It applies Principal Component Analysis (PCA) to the Iris dataset to reduce its dimensionality to three dimensions. Then, it plots the iris flowers across the first three PCA dimensions using a 3D scatter plot. PCA is a dimensionality reduction technique that helps visualize high-dimensional data in a lower-dimensional space while preserving most of the variability in the data.

and

PCA will create 3 new features that are a linear combination of the 4 original features. In addition, this transform maximizes the variance. With this transformation, we see that we can identify each species using only the first feature (i.e. first eigenvalues).

Total running time of the script: (0 minutes 0.184 seconds)

Data

Index
Index of iris

02 Dec 1996      105 Index
08 Mar 1993     4551 iris.data
30 May 1989     2604 iris.names

iris.data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica

iris.name
1. Number of Instances: 150 (50 in each of three classes)

2. Number of Attributes: 4 numeric, predictive attributes and the class

3. Attribute Information:
   1. sepal length in cm
   2. sepal width in cm
   3. petal length in cm
   4. petal width in cm
   5. class:
      -- Iris Setosa
      -- Iris Versicolour
      -- Iris Virginica

4. Missing Attribute Values: None

Summary Statistics:
      Min  Max   Mean    SD   Class Correlation
      sepal length: 4.3  7.9   5.84  0.83    0.7826
      sepal width: 2.0  4.4   3.05  0.43   -0.4194
      petal length: 1.0  6.9   3.76  1.76    0.9490  (high!)
      petal width: 0.1  2.5   1.20  0.76    0.9565  (high!)

5. Class Distribution: 33.3% for each of 3 classes.

Gist

Consists of json - html - CSV

GitHub GIST

Thanks to

Dr. Saeed Haghgoo

Mr. Amir Mohammad Safari, MEng

Mr. Hamid Reza Rezaee, MEng

> Comment on twitter (X)
 
CC BY-NC-SA 4.0  2009-PRESENT © Nuxsco (AMS) This website rewrite several times from those years up to present